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Instantons in matrix valued a4 quantum field theory 

Jack Gunson and Gurjeet S Dhesi 
Department of Mathematics, University of Birmingham, Birmingham B15 2TT, UK 

Received 5 February 1986 

Abstract. In scalar 4~~ quantum field theory the instanton solution which gives the minimal 
action is a spherically symmetric solution due to the proof of the Sobolev inequality for 
scalar functions. The value of the minimal action is related to the Sobolev constant of the 
Sobolev inequality. 

We generalise this to matrix valued a4 field theory by generalising the Sobolev inequality 
to matrix valued functions. 

1. Introduction 

Consider a massless 44 field theory in four dimensions. The correlation functions are 
given by 

GN(X,, . . . , XN) = W ( X ) 4 i X J ,  . . . ,4 (XN)  exp(-A(4)) (1.1) I 
where the action A ( 4 )  is 

and  4 is a scalar spin-zero field, the above formulation being Euclidean. 

to the Euclidean field equation with g negative. 
For instanton solutions, we have to look for non-trivial solutions with finite action 

The Euclidean field equation is 

-A4(X) +gr#~~(x)  =O. (1.3) 

Set 

4 ( x )  = (l /J-glf(x) ( 1.4) 

-Af( X) -f3( X) = 0 (1.5) 

(1.5) being a numerical equation. 
It can be shown, using the Sobolev inequality (Stein 1970, Klauder 1973) for scalar 

valued functions, that solutions leading to the minimal action are spherically symmetric. 
If we choose an origin xo and define r = Ix - xoI then we have 

then f(x) satisfies 
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where f (x)  for this equation gives the minimal action. If we find a solution to equation 
(lS), which is a numerical number, A, then the classical action is given by 

N 4 C )  = -A/g 

by looking at equations (1.4) and (1.2). 
is stationary at A = 1. This gives I d'~x[(a,4,)~ + g4:1= 0 

then 

(1.7) 
If A(&) is finite then so is A(A4,) and A[A+,] 

A = + f4 (x )  d4X > 0. I 
Following Parisi (1977) consider 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

If dimension d is smaller or equal to 4, R ( 4 )  is bounded from below by constant R 

R ( 4 ) a  R S O  (1.12') 

and there exists a spherically symmetric zero free function 4,(x) which saturates the 
bound R(&) = R and is a solution of the variational equation 

S R ( b ) / W ( x )  = 0 (1.13) 

then this can be explicitly written as 

-A~ , (x )  - ~ : ( x ) K  = O  (1.14) 

where 

(1.15) 

If we rescale &(x), then with K = 1 we have 

-A&(x) - 4;(x) = O  (1.16) 

For each instanton solution, we had derived the identity (1.8) which for f (x)  can 
equation (1.16) being identical to (1.5). 

be written as I d*x(d,J(~))~= d4xJ4(x). I (1.17) 

As 

(1.18) 
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we can write the action A(#J,) using (1.17) and (1.18) as 

1187 

(1.19) 

The smallest action therefore corresponds to the minimum of R(c$). Thus 

A=:R (1.20) 

and the solution f (x)  we are looking for is given by f (x)  = &(x) for K = 1. 
The problem of finding the minimal action is now reduced to finding the minimum 

of R ( 4 )  and the corresponding solution &(x). We discuss this in a more mathematical 
approach, which will help us later when we generalise it to matrix valued functions. 

2. Sobolev inequality of scalar valued functions 

Let f (x)  be scalar valued function on Re. We define the Sobolev norm on f (x)  as 

where I f 1  = (f’f)’/2 (note f’ is the complex conjugate o f f ) .  We write the general 
inequality as 

IlAf IIp 2 Ce.pIlflli, (2.2) 
where 

Ce,p is the sharp (or best) constant of the above inequality. 

Theorem. I f f  and Af E Re and e > 2 then 

- 2e 2=- 
e-2 I lA f l l23  C e . 2 I l f l l I  

where 

and the maximising function f (x)  which gives the above Sobolev constant is 

f(x) = ( a  + br2)2-e’2. (2.6) 

We note that the Sobolev inequality is a special type of the general inequality, the 
value of p being 2. 

We aho  note that when e = 4  (in field theory e will be considered to be the 
dimension) the Sobolev inequality (2.4) becomes related to equation (1.12) such that 

using (2.4), (1.12), (1.12’) and (1.20). 
The proof of the above theorem can be found in Stein (1970), Klauder (1973) and 

Lieb (1983). However we write it, it involves the idea of Schwarz symmetrisation (Lieb 
1983) and classical rearrangement inequalities (Hardy et a1 1952). 

( C4,2)4 = R = 4A 



1188 J Gunson and G S Dhesi 

3. Sobolev inequality of matrix valued functions 

As shown in the previous section the Sobolev inequality gives the minimal action to 
an instanton in 44 field theory. Now many quantum field theories possess natural 
generalisation in which the number of degrees of freedom is a free parameter, the 44 
field theory being one of them. We shall therefore generalise the Sobolev inequality 
to matrix valued functions F(x) ,  which will help us in giving the minimal action to 
an instanton solution in (D4 field theory, (D being matrix valued. 

To achieve this, first the idea of Scharz symmetrisation and the classical rearrange- 
ment inequality has to be extended to matrix valued functions. 

4. Holder inequality and Schwarz symmetrisation 

On the linear space I U S ( @ ' )  of s x s measurable complex matrix valued functions on 
e', we define the following norms: 

where /AI is (A+A)"' using the polar decomposition A =  UlAl of A into a unitary 
matrix U and a positive semidefinite factor IA(. In particular, we have 

(4.3) 

Note that a dagger is used to denote the adjoint matrix. In this paper the asterisk will 
always denote Schwarz symmetrisation, defined later. Clearly the subspace M,.,([W') of 
M,([W') for which the norm 1 1  . / I p  is finite forms a Banach space under this norm. 

By combining the standard Holder inequality for complex functions with the 
corresponding matrix inequality 

1 1 1  - +- 
P 9 '  

(4.4) _ - -  Tr( 1 AB 1 p ,  s (Tr( 1 A( ' ) ) I ' ' (Tr( 1 B( ') ) I' 

we get the Holder inequality for M y ( @ ' ) :  

(4.5) 

We can also extend the notion of Schwarz symmetrisation to MT([We). 

Definition 4.1. Let F be a function in M,(@') and let the u,(x), 1 < r <  s, be the 
associated singular value functions chosen in decreasing order 

(4.6) 
Then a function F* in  M,([W') is a Schwarz symmetrisation of F if it satisfies the 
following. 

u l ( x )  5 u2(x)  2. . .a u,(x) 5 0. 

(a )  F*(x)  is a diagonal matrix diag(uT(x), . . . , uf (x ) ) .  
(b)  F*(x , )  = F*(x?) when I x , /  = I.xlI. 

(d )  ~ . ( { z r : ( + ) ( x ) > ~ } ) = ~ ( { x : u , ( . x ) > ~ } ) V ' ~ > O a n d  l ~ r ~ s .  
( c )  OGIX,lG/X,l*F*(X,)5 F * ( X 2 ) .  
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Remark. Immediate consequences of this definition are 
(i) for s = 1 it reduces to the conventional definition (Lieb 1983), 
(ii) a ~ ( x ) a a T ( x ) ~ .  . . a a T ( x ) a O ,  
(i i i )  if U ( x )  is unitary matrix valued then (UFU')* = F*, 
(iv) if FE M,(e')  then so is F* and IIFllp= IIF*Il, for l s p s m .  

5. Rearrangement inequalities 

The basic integral rearrangement inequality, originally due to Hardy et a1 (1952), has 
been strengthened by Brascamp et a1 (1974) to the following form. 

Theorem 5.1. Let f ; ,  1 s j  s k be complex measurable functions on Re and let a,,, 
1 s j  s k, 1 s m s n be real numbers. Then 

In this section we prove the following extension. 

Theorem 5.2. Let F, ,  1 s j 4 k be measurable s x s matrix valued functions on U j '  and 
let a,,, 1 s j s k, 1 s m s n be real numbers. Then 

Remark. The inequality holds for all possible orderings of the matrix product under 
the trace operation and so no particular order is specified. 

We need the following lemma of Fan (Marshall and Olkin 1979) in the proof of 
theorem 5.2. 

Lemma 5.3. Let T,, 1 s j s k be a set of complex s x s matrices with singular values 
uIJ a uz, 5. . . us, a 0 and let D, = diag{u,, . . . , , usJ}, 1 s j s k be the corresponding 
singular value diagonalisations. If U,, 1 s j s k are unitary s x s matrices then 

lTr( Ul Ti U2 T2 . . . Tk )I s Tr( D1 D2 . . . Dk ). 

Corollary 5.4. 

Tr(JT,T,. . . TkI)sTTr(DlD2 .. . D k ) .  

Proof of theorem 5.2. On the left-hand side of ( 5 . 2 )  we can replace the F by their 
decreasing singular value diagonalisations as defined in lemma 5.3. Corollary 5.4 
guarantees that the value of the integral is not decreased. The proof is then completed 
by applying theorem 5.1 to each term in the sum defining the trace. 

6. Sobolev inequality 

A feature of Schwarz symmetrisation which is useful in proving Sobolev inequalities 
is the global smoothing property. This is illustrated by the next lemma, an extension 
of one due to Lieb (1983). 
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Lemma 6.1. Let F and VFE M.s+2(B'). Then VF*E M,7,2(l!3e) and 

IlVF112 3 IIVF*112. 

Remark. The term llVFllz is a concise notation for 

Proof: Let A be the Laplacian in e dimensions. Then erA, for t > 0 ,  has a Gaussian 
kernel h,(x-y),  which is Schwarz symmetric. We can also define the Schwarz sym- 
metric matrix valued kernel 

H,(x - y )  = h,(x - y)Z. 

Using theorem 5.2, we have I@,. d'x d'y Tr( G+(x)H,(x -y)G(y))  (6.2) 

for any F, G E M&') and t > 0. Since {e'A, t > 0) is a strongly continuous contraction 
semigroup, we have 

d'x d'y Tr( G*(x)H,(x - y)G*(y)) 
1.2. 

d'x d'y Tr(F+(x)(H,(x-y)F(y)- F(x) ) )  = d'x Tr(F+(x) AF(x)) 

(6.3) 
for sufficiently smooth F of compact support. Applying to each side of (6.2) and 
integrating by parts, we obtain 

6G+(x) 6G(x)) S- d'x E e Tr (6G*(x) -- 6G*(x)) 
sxi sxi R (' i = l  sxi sxi 

from which the theorem follows by extension to the domain of V.  
We do not know of a correspondingly simple proof of the more general inequality 

llVFllpa IIVF*I(,. The Sobolev constant Ce,,,, is defined as the infimum of the ratio 
IIVFllp/llFllr where 1/p = l /p  - l / e  for 1 G p  S e. 

In the case of p = 2, we have the following theorem. 

Proof: From lemma 6.1, an optimising function must be Schwarz symmetric and so of 
the form diag(a,(x), . . . , a s ( x ) } .  The Euler equation for stationary values of the 
functional 

J ( F )  = I I V ~ I 1 2 / I I ~ I I I  
is, for this class of functions, 
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We can rescale F so that IlVFII:= IIF)(i ,  giving 

AI FI + I  F1j-I = 0. 

Aui(x)+(ui(x)) j - '  = O  1 < i < S  (6.8) 

in which the ui are non-increasing functions of 1x1. The general solution to this equation 
is well known (Talenti 1976) to be 

(6.7) 

The matrix equation (6.7) decomposes into the decoupled equations 

a,(X)=(Ui+bilX12)1-'/~ 1 S i S s  (6.9) 

where ai, bi > 0. 
A scaling argument can be used to show that, for 

2 l - e / 2  sa,b(X)=(a+blXl 

d'x(S,,,(x))'= (ab)-' d'x(S,.,(x))' I I d'X(vs,,b(X))2= (ab)-(e-2)/2 j d'X(vSl,I(X))2. 

Hence, for functions of the form (6.9), we have 

where Ce+2 is the known best constant for the case s = 1. The factor in front of CeS2 is 
31,  by Jensen's inequality. The infimum is attained for functions F, in which only 
one matrix element, on the diagonal, is non-zero and this element is of the form (5.9). 
More generally, we can take any fixed one-dimensional orthogonal projector multiplied 
by the same scalar function of x. 

We can generalise the Sobolev inequality to the case of rectangular matrices. On 
the linear space M,,(@') of s x t measurable complex matrix valued functions on We, 
we define the norm as before, i.e. 

where 

IF(x)l= (F+(x)F(x)) ' l2 .  

Without loss of generality, we can take F(x)  to have more columns than rows (if 
otherwise, F (x )  can be interchanged with F(x) ,  leaving the norm invariant). 

Theorem 6.3. If F and V F E M,l,z(e'), then for e > 2 

- 2e 
2=- (6.10) e - 2  IP FII 2 3 Cr.2,sr II FII 9 

where 

(6.11) 
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Proof: Write 

(6.12) 

Apply the following transformation on F, giving F’: 

F’ = N,,F,, F = F,, N = NI, (6.13) 

where NI,  is a t x s rectangular matrix with the property N + N  = I and NI,  is indepen- 
dent of x. Then N,,F,, is a square matrix. The norm of F and the norm of the derivative 
of F stay invariant under the above transformation, i.e. 

IIF’II = IlFll and IIVF’II = IIVFII. 
Restricting F to the subclass of positive semidefinite matrices, the Euler equation for 
stationary values of the functional 

J(F) = l l ~ ~ l l 2 / l l ~ l l 2  (6.14) 

is AI FI + 1 F1j-I = 0, as before, the above equation being identical to equation (4.7). 
Hence 

Ce,2,sr= Ce,2,1. (6.15) 

7. Conclusion 

When considering a massless Q4 field theory, in four dimensions CP being a matrix 
valued (any rectangular matrix), when the action A(@)  is 

A(@)  = d4~[~(a,@)2+fgCP4] I 
then (6.15) tells us that the minimal action of the instanton solution in the matrix 
valued Q4 field theory is the same as in the scalar valued (64 field theory. Further it 
can also be shown that in the massive case no instanton solution exists in four 
dimensions for the minimal action but the minimal action is the same as that for the 
massless case. 
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